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Abstract. We study measurement induced disturbance (MID) in a qutrit -qutrit
system with considering the effect of the external magnetic field, nonlinear and lin-
ear coupling constants and temperature. We show that all of these parameters have
effective roles in MID. We also investigate the effect of finite external magnetic fields
direction as parallel and anti-parallel on MID, and find some interesting results.
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1 Introduction

Entanglement is fundamental property which makes distinct quantum world from classical
world in physics. The entanglement of two distant particles, which distinctly shows the non
local nature in Quantum Mechanics, is provided particles in astrophysical objects [1]. It is
shown that quantum mechanics plays an important role for cosmological neutrinos. These
neutrinos could be considered as a nonlocalisable ensemble of entangled particles [2, 3]. For
quantifying quantum correlation, measures as quantum discord and MID are introduced,
which are nonzero for some separable states, so they includes entanglement [4, 5]. Quantum
discord has an optimization process which could be just calculated analytically for a few
qubit-qubit systems. MID is used to distinguish quantum correlations from classical ones.
The calculation of MID does not need optimization, thus MID is a simple way to evaluate the
quantum correlation. It is clear that external magnetic field plays an important role on the
quantum correlations and entanglement in spin systems such as Bose-Hubbard, Heisenberg
and Ising models [6, 7]. Recently, we investigate the effect of different system parameters
on the thermal geometric discord and entanglement [6]. Entanglement against temperature
is more fragile than quantum discord. Entanglement and quantum correlation have been
studied for spin half (qubit-qubit) systems a lot while for spin one (qutrit-qutrit) systems,
there are a few studies [11, 12, 13, 14, 15, 17, 18]. The motivation of this work is a comparison
of quantum correlations which are measured by MID and geometric quantum discord that
are evaluated in Ref. [6].

This work is organized as follows. The Hamiltonian of model is introduced in section
2. In section 3, the definition of MID has been provided; then we investigate thermal MID
for a qutrit-qutrit system in zero external magnetic fields due to the linear and non linear
coupling constants at different temperatures. In the following, in section 4 effect of external
magnetic fields has been investigated. The comparison and the result have been provided
in section 5.
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2 Hamiltonian of system and the solutions

~ ~ ~

In order to control the system of atoms in optical lattice (atoms in traps), progress of laser
cooling and trapping has made available more ways for us. We consider a system which has
two wells in the lattice with one qutrit (spin-1 atom) in each well. This lattice would be
made of three perpendicular laser beams [6, 19, 20, 21, 21]. A Bose-Hubbard Hamiltonian
describes this system. Each well has only one qutrit in the regime of the Mott, so the
Hamiltonian of the system could be defined for finite and small hopping as [6, 19, 20, 21, 21]

H = η + J(S1 · S2) +K(S1 · ~S2)2, (1)

where η = J −K, K = − 2r2

3U2
− 4r2

U0
and J = − 2r2

U2
, with hopping matrix elements (r). Here

Ut(t = 0, 2) are the repulsion potential of Hubbard, where t is the eigenvalue of the total

spin ~S. Because η is constant, it could be ignored. The Heisenberg interaction strength
(linear coupling) is J , this system is called antiferromagnetic for J > 0 and ferromagnetic
for J < 0. Parameter K shows the nonlinear coupling constant. The Hamiltonian of a
qutrit-qutrit system, in the presence of the nonuniform external magnetic fields along the z
axis, Bm (m = 1, 2), is [19, 20, 21, 21, 22]

~H = J(S1 · ~ ~ ~S2) +K(S1.S2)2 +B1S1z +B2S2z, (2)

where ~Sm = (Smx, Smy, Smz) with m = 1, 2 are the spin operators defined as

Smx =
1√
2


0 1 0

1 0 1

0 1 0

 , Smy =
1√
2


0 −i 0

i 0 −i

0 i 0

 ,

Smz =


1 0 0

0 0 0

0 0 −1

 .
We suppose that the magnitude of B1 and B2 are same but they could be anti-parallel or
parallel. At first, we find the eigenvalues (Ej) and the eigenstates (|φj〉) of the model.

For parallel magnetic fields, B1 = B2 = B, the eigenstates are calculated as [6].

|φ1〉 =
1√
6

(| − 1, 1〉+ 2|0, 0〉+ |1,−1〉),

|φ2〉 =
1√
2

(−| − 1, 1〉+ |1,−1〉),

|φ3〉 =
1√
3

(| − 1, 1〉 − |0, 0〉+ |1,−1〉),

|φ4〉 = |1, 1〉,

|φ5〉 =
1√
2

(|0, 1〉+ |1, 0〉),

|φ6〉 =
1√
2

(−|0, 1〉+ |1, 0〉),

|φ7〉 =
1√
2

(−| − 1, 0〉+ |0,−1〉),
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|φ8〉 =
1√
2

(| − 1, 0〉+ |0,−1〉),

|φ9〉 = | − 1,−1〉. (3)

and corresponding eigenvalues are as [6]

E1 = K + J,

E2 = K − J,
E3 = 4K − 2J,

E4 = 2B +K + J,

E5 = B +K + J,

E6 = B +K − J,
E7 = K −B − J,
E8 = K −B + J,

E9 = −2B +K + J (4)

The density matrix for the system is

ρAB =
1

Z



ρ11 0 0 0 0 0 0 0 0

0 ρ22 0 ρ24 0 0 0 0 0

0 0 ρ33 0 ρ35 0 ρ37 0 0

0 ρ42 0 ρ44 0 0 0 0 0

0 0 ρ53 0 ρ55 0 ρ57 0 0

0 0 0 0 0 ρ66 0 ρ68 0

0 0 ρ73 0 ρ75 0 ρ77 0 0

0 0 0 0 0 ρ86 0 ρ88 0

0 0 0 0 0 0 0 0 ρ99



. (5)

Where the elements of this matrix are

ρ11 = e−
βE4
T (6)

ρ22 = ρ44 =
1

2
(e−βE3 + e−βE6)

ρ33 = ρ77 =
1

6
(e−βE2 + 3e−βE7 + 2e−βE8)

ρ55 =
1

3
(2e−βE2 + e−βE8)

ρ66 = ρ88 =
1

2
(e−βE9 + e−βE1)

ρ99 = e−
βE5
T

ρ24 = ρ42 =
1

2
(e−βE3 − e−βE6)

ρ35 = ρ57 = ρ53 = ρ75 =
1

3
(e−βE2 − e−βE8)

ρ37 = ρ73 =
1

6
(e−βE2 − 3e−βE7 + 2e−βE8)
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where β = 1
kBT

with kB = 1 and T is temperature of the system, Z =
∑9
j=1 e

−βEj is the
partition function. The eigenvalues and the eigenstates have been calculated for anti-parallel
magnetic fields (B1 = −B2 = B). They did not have a compact form, so we do not mention
them here.

3 Measurement induced disturbance

Calculation of quantum discord for a qutrit-qutrit system is difficult because of optimization,
so with application of local measurements on state of system, one can quantify quantumness
of system [5]. Spectral resolutions of the reduced density matrix ρA and ρB are respectively

ρA =
∑3
i=1 p

A
i ΠA

i and ρB =
∑3
j=1 p

B
i ΠB

i . Orthogonal projective operators which are one

dimensional, for parts A and B for qutrit-qutrit system can be written as {ΠA
i } and {ΠB

j }
with i, j = 1, 2, 3. These local projective measurement produce state Π(ρAB) as

Π(ρAB) =
3∑

i,j=1

(ΠA
i ⊗ΠB

j )ρAB(ΠA
i ⊗ΠB

j ) (7)

In general, a bipartite state ρAB (qutrit-qutrit system) is not classical but after local mea-
surement Π(ρAB) is classical. MID is defined as difference between mutual information for
state before and after measurements [5].

Q(ρAB) = I(ρAB)− I(Π(ρAB)), (8)

where the quantum mutual information I(ρAB) describes the total correlation for a bipartite
state ρAB while Π(ρAB) is a classical state so I(Π(ρAB)) describes the classical correlations
in ρAB . MID is the difference between the total and classical correlations. For a given state
ρAB mutual information is defined as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (9)

By finding eigenvectors of reduced density matrix A and B, we get projective operators on
subsystem A and B as ΠA

i = ΠB
i = |i〉〈i|, i = 1, 2, 3 for subsystem A

ρA = ΠA(ρA) =


ρ11 + ρ22 + ρ33 0 0

0 ρ44 + ρ55 + ρ66 0

0 0 ρ77 + ρ88 + ρ99

 (10)

and for subsystem B

ρB = ΠB(ρB) =


ρ11 + ρ44 + ρ77 0 0

0 ρ22 + ρ55 + ρ88 0

0 0 ρ33 + ρ66 + ρ99

 . (11)

Projective operator (Π) on ρAB is

Π(ρAB) = diag{ρ11, ρ22, ρ33, ρ44, ρ55, ρ66, ρ77, ρ88, ρ99}. (12)

Finally, MID is calculated as

MID = −2 q1 log2 (q1 )− q2 log2 (q2 )− 2 q3 log2 (q3 )− 2 q4 log2 (q4 ) + q5 log2 (q5 ) (13)

+q6 log2 (q6 ) + q7 log2 (q7 ) + q8 log2 (q8 ) + q9 log2 (q9 ) + q10 log2 (q10 ) + log2 (q11 ) .
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When we have,

q1 = e−βE1 +e−βE2 +e−βE3

Z , q2 = e−βE2 +4 e−βE3

Z , q3 = e−βE4 +e−βE5

Z , q4 = e−βE6 +e−βE9

Z , q5 =

2 e−βE1

Z , q6 = 6 e−βE3

Z , q7 = 2 e−βE5

Z , q8 = 3 e−βE2

Z , q9 = 2 e−βE4

Z , q10 = 2 e−βE6

Z and

q11 = 2 e−βE9

Z .

Firstly, we study the effect of linear coupling constant and temperature on MID, so we
assume that magnetic fields and nonlinear coupling are zero. Fig. 1 shows, at zero temper-
ature, for J > 0 the ground state of system is an entangled state (|φ3〉). In these conditions
MID is non-zero (MID ' 1.6) while for J < 0 the ground state of system is a mixed state
as ρ = 1

5 (|φ1〉〈φ1|+ |φ4〉〈φ4|+ |φ5〉〈φ5|+ |φ8〉〈φ8|+ |φ9〉〈φ9|), which is a classical mixed state
and MID is exactly shows quantum correlations. As temperature increases, the constant
behavior of MID with respect to J changes.

Figure 1: MID for B1 = B2 = 0 as functions of T and J for K = 0

In the following, we investigate the behaviors of MID as a function of K and T with zero mag-
netic fields and |J | = 0. Fig. 2 shows at T = 0, the sate of system, for K > 0, is mixed state
as ρ = 1

8 (|φ1〉〈φ1|+ |φ2〉〈φ2|+ |φ4〉〈φ4|+ |φ5〉〈φ5|+ |φ6〉〈φ6|+ |φ7〉〈φ7|+ |φ8〉〈φ8|+ |φ9〉〈φ9|),
and MID of this system has constant value (MID = 0.4) which shows quantum correla-
tions. While this figure demonstrates that for K < 0, the ground state of the system is an
entangled state |φ3〉. At zero temperature, MID is not a function of K as Fig. 2 shows.
Temperature will destroy constant behavior of MID with respect to K.

It seems necessary to consider the effect of both linear and nonlinear coupling constants
on MID in zero magnetic field. At zero temperature for J > 0 (J ≤ 0), point of quantum
phase transition is on K = J

3 (K = J). There is an interval of nonlinear coupling constant
which MID is constant. In transition point, for J > 0, the state of the system will change
from |φ3〉 to a state which has been made of combinations of |φ2〉, |φ6〉 and |φ7〉. While for
zero linear coupling, state changes from |φ3〉 to a combinations of |φ1〉, |φ4〉, |φ5〉, |φ8〉 and
|φ9〉. These results are the same with the behavior of geometric discord [6]. Fig.3 verifies
above results at a finite temperature (T = 0.2).
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a.

Figure 2: MID for B1 = B2 = 0 as functions of K and T for J = 0

4 Effect of external magnetic field on MID

In the this section, we study the effect of the external magnetic field (B) on MID. Moreover,
it is interesting to survey effect of the direction of two external magnetic fields on MID, so
we consider two cases as parallel and anti-parallel external magnetic fields on our physical
system.

Fig. 4 shows MID for J = 0.2 and K = −0.3 at different temperatures as a function
of magnetic field B1 = B2 = B. In this figure, one can find that MID is maximal for zero
external magnetic field (B = 0). The effect of temperature is destructive on MID as figure
shows.

At the final case, we consider quantum correlations for a system with two finite anti-
parallel external magnetic fields. For this case MID, have been calculated numerically.
Quantum correlations have been shown in Fig. 5 as a function of a finite external magnetic
field for K = −0.3 and J = 0.2 at several different temperatures. For anti-parallel magnetic
fields (B1 = −B2 = B), the figure shows that with respect to |B| at first MID decreases
then for big magnetic field, it is constant. For anti-parallel magnetic fields, MID is more
robust than parallel magnetic fields, as Fig. 4 and 5 show, so direction of magnetic fields
plays a significant role in quantum correlations.

5 Comparisons and results

In this work, we have calculated quantum correlation by MID for Bose-Hubbard system
under the effect of magnetic fields at finite temperature. We find some situations with non-
zero temperatures that the quantum correlation are more resistant than entanglement; this
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Figure 3: MID as a function of K for T = 0.2, B1 = B2 = 0

Figure 4: MID as a function of B1 = B2 = B for J = 0.2 and K = −0.3
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Figure 5: MID as a function of B1 = −B2 = B for J = 0.2 and K = −0.3

is demonstrated in Figs. 1 and 2. In Ref. [6], the quantum correlations and the entanglement
have been investigated by exact geometric discord and negativity. We show for some values
of J and K, that the direction of magnetic field can amplify MID as geometric discord and
the entanglement [6]. The general behavior of MID in the presence of parallel magnetic
fields (B1 = B2 = B) is similar to the zero magnetic field. While for anti-parallel magnetic
field (B1 = −B2 = B), the behavior of MID is very different duo to the dependence of
eigenstates on B, as shown in Fig. 6. In this condition, magnetic field could strengthen
MID as Fig. 6 demonstrates which is an interesting result.

We have shown in Fig. 5 at a high temperature (T = 1) and small magnetic fields
(|B| < 0.37), MID and the geometric discord behave similarly while negativity behaves
differently. In this situation, the MID and geometric discord are non-zero in contrast to zero
negativity.
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