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Abstract. In this work, we have investigated the inflation mechanism driven by the
Barrow Holographic dark energy (BHDE) in the early universe. BHDE is based on
the Barrow relation for horizon entropy, which in turn is inspired by the shape of
the COVID-19 virus. It was shown by Barrow that the quantum gravitational effects
may instigate complex fractal features in the structure of a black hole. Since the
length scale during the inflation is expected to be small, the energy density obtained
from the application of the holographic principle in the early universe will be large
enough to support the inflationary scenario. Using the Granda-Oliveros IR cut-off,
we have studied the inflationary scenario with the universe filled with BHDE. Various
analytic solutions for the model were found out including the slow-roll parameters,
scalar spectral index, and tensor-to-scalar ratio. Since inflation is generally attributed
to the presence of scalar fields, we have explored a correspondence between BHDE and
scalar field models. Both canonical scalar field and the Tachyonic scalar field have been
considered for this purpose. The evolution of the potential generated from the fields is
plotted and found to be consistent with the observations. From this work, we see that
BHDE can be a model of dark energy that can successfully drive early time inflation.
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1 Introduction

The inflationary phase is a crucial era in the cosmological evolution of the universe. It
is a very short lived phase in the early times just after the big bang, when the universe
experienced extreme expansion. The concept was proposed way back in the 1980s [1, 2, 3,
4, 5] and since then, it has received a lot of attention from researchers. Early inflationary
phase, along with the late time cosmic acceleration [6, 7], forms the two pillars of the present
cosmological model. Since regular matter cannot account for these extremely expanding
phases, exotic forms of matter have been proposed. While the late time acceleration has
been attributed to the presence of dark energy (DE), the inflationary phase is assumed to
be driven by a special form of DE known as the scalar fields with slow rolling assumptions
[8, 9, 10]. A considerable amount of research has been done on inflationary models over the
period of the last three decades [11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Although the concept of DE has been able to explain the accelerated expansion of the
universe at late times, yet it is universally accepted that the exact nature of DE is not yet
known to us. For an extensive review on dark energy the reader is referred to [21]. There are
however different candidates which effectively play the role of DE. Chaplygin gas models are
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well known candidates of DE [22, 23, 24, 25, 26, 27]. Similarly scalar fields are also effective
DE models that are believed to play an important role in inflation. Another potential
candidate for DE is the Holographic dark energy (HDE) [28, 29, 30], whose formulation is
based on the holographic principle [31]. The holographic principle, which has its origin in
the black hole (BH) thermodynamics, states that the entropy of a system is characterized
by its area and not by its volume [32, 33]. The idea was inspired by the insight that the
information of all the objects that have fallen into a BH is encoded on the surface of the
event horizon. The holographic principle was extended to string theory by Susskind in Ref.
[32]. Also, the de-Sitter space holography is recently formulated by him in Ref. [34].

The role of HDE as dark energy driving the late time cosmic acceleration has been
extensively discussed in the literature [35, 36, 37]. This directly provides motivation to
study the role of HDE in the inflationary phase. It is known that the HDE density is related
to the inverse square of the infrared (IR) cut-off. Moreover since the IR cut-off is related
to causality, it is generally considered as a form of horizon such as the particle horizon,
future event horizon or Hubble length. There can be different motivated forms of IR cut-off
that can be used in the study of HDE. One such form is the Granda-Oliveros (GO) cut-off
which was framed from dimensional motivations [38, 39] and is given by a combination of
the Hubble parameter and its time derivative. Since the length scale during the inflation is
expected to be small, the energy density obtained from the application of the holographic
principle in the early universe will be large enough to support the inflationary scenario.

The standard entropy of a physical system is given by S = A/4 (where A is the area),
and the HDE is based on this relation. But any modification to the entropy-area relation
will in principle result in a modified form of HDE. These corrections to the area law are
basically inspired by the quantum gravitational framework. Loop quantum gravity intro-
duces logarithmic corrections [40, 41, 42, 43] to the area law, whereas power law corrections
are introduced by the entanglements of the quantum fields [44, 45]. Another important
consideration was the modification of the thermodynamic entropy of a system to the non
additive form instead of the additive one [46, 47, 48]. Based on this concept it was shown in
[49] that the standard area law must be generalized to the power law form S = γAδ, where
δ is the Tsallis parameter, γ is an unknown parameter and A is the area of the BH horizon.
It can be clearly seen that for γ = 1/4 and δ = 1, the above entropy reduces to the stan-
dard Boltzmann-Gibbs entropy discussed before. The Tsallis HDE is inspired by this Tsallis
entropy and has been investigated widely in literature for the late time acceleration using
various IR cut-offs [50, 51, 52, 53, 54]. The Tsallis HDE as a source of early time inflation
was studied in [55] using the GO infrared cut-off, whereas inflation driven by standard HDE
for different IR cut-offs was studied in [56, 57].

Recently, inspired by the shape of the COVID-19 virus, Barrow showed that the quantum
gravitational effects may instigate complex fractal features in the structure of a BH. A three-
dimensional spherical analog of a ’Koch Snowflake’ was created by an infinite diminishing
hierarchy of touching spheres around the Schwarzschild event horizon. Starting with a
Schwarzschild BH with mass M and radius Rg = 2GM/c2, we keep on attaching some
smaller spheres which touch its outer surface, just like a way how the COVID-19 virus gets
attached to the parent cell. Further smaller spheres are attached to these outer spheres and
the sequence is continued to give a highly complicated fractal structure. Here the boundary
will be composed of surfaces of hierarchically smaller spheres in contact with each other.
This will be like a ’sphereflake’, and an animation showing its construction may be visualized
in Ref.[58]. This complicated structure induces a finite volume, but with the infinite or finite
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area, which in turn leads to the modification of the BH entropy [59]

SB =

(
A

A0

)1+∆/2

, (1)

where A is the standard horizon area, and A0 is the Planck area. Here the deformation
induced by quantum gravity is given by the exponent ∆. For ∆ = 0, we recover the standard
Bekenstein-Hawking entropy with a simple structure, and for ∆ = 1, we get the complex
fractal structure of the horizon. This toy model is basically intended to show that near
the scale where the quantum gravity effects dominate, the surface area of a BH can greatly
exceed 4πR2

g due to the presence of intricate fractal features. Moreover this will happen
for any external intricacy having a Hausdorff dimension greater than 2. Basically the 2-
dimensional geometrical surface behaves like more than 2 dimensions and tends towards
the behavior of a 3-dimensional surface in a limiting scenario with maximum intricacies.
This shows that the 2-dimensional surface behaves as if it has all the information of a 3-
dimensional volume. It must be noted that this fractal nature does not arise from any
particular quantum gravity calculations, but from generalized physical principles and hence
is a reasonable proposition as an initial approach [59]. On larger scales, this entropy model
has become one of the prototypes for observational analysis. Using this Barrow relation
for the horizon entropy Saridakis in [60] constructed the Barrow Holographic dark energy
(BHDE). BHDE is a generalized model possessing the usual HDE as a ∆ = 0 limit. In [60] it
was shown that BHDE possesses a far richer structure compared to the usual HDE and also
a richer cosmological behavior. The role of BHDE in late time acceleration was discussed
in detail. Here we are interested in studying the inflationary scenario of the universe driven
by BHDE. The paper is organized as follows: In section 2 we discuss the basic equations
of BHDE. Section 3 is devoted to the study of inflation driven by BHDE. In section 4, a
correspondence between BHDE and scalar field models is set up. Finally, the paper ends
with some discussion and conclusion in section 5.

2 Barrow Holographic dark energy

Here we will construct the BHDE from the Barrow entropy which is a modification to the
standard entropy relation. The standard entropy relation is characterized by the inequality
ρDEL

4 ≤ S, where the condition S ∝ A ∝ L2 is imposed, L being the horizon length. The
energy density of BHDE as motivated from the Barrow entropy relation (1) is given by

ρBHDE = CL∆−2,where C = 3c2M2
P . (2)

∆ is the parameter that measures the quantum gravitational deformation, MP is the Planck
mass, c2 is the model parameter and L is the IR cut-off length. For ∆ = 0, eqn.(2) reduces
to the energy density for the standard holographic dark energy, and as ∆ → 1 it becomes
modified and expresses the fractal features. Here it should be stated that the parameter C
has the dimensions [L]−∆−2.

Here we consider the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric of the
form,

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (3)

where a(t) is the cosmological scale factor representing the expansion of the universe. The
Hubble parameter H is defined as,

H ≡ ȧ

a
, (4)
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where the dot (.) derivative with respect to time.
The Friedmann equations in a homogeneous and flat FLRW universe filled with the dark

energy and matter read as

H2 =
1

3M2
P

(ρBHDE + ρm), (5)

and

2Ḣ + 3H2 = − 1

M2
P

pBHDE , (6)

where ρm and pBHDE represent density of matter and pressure of BHDE respectively. As-
suming that there is no interaction between dark energy and matter, we have the conserva-
tion equation for BHDE as

ρ̇BHDE + 3H(1 + ωBHDE)ρBHDE = 0, (7)

where ωBHDE = pBHDE/ρBHDE is the equation of state (EoS) parameter corresponding to
BHDE. Exploiting Friedmann equations ωBHDE reads

ωBHDE = −1− 2M2
P Ḣ

CL∆−2
, (8)

The most simple choice for the IR cut-off L is the inverse Hubble length H−1. But there are
other choices such as the particle horizon or the future horizon, etc. GO cut-off is one such
alternative as already discussed before. Here the length scale is taken as a combination of
the Hubble parameter and its time gradient as given below,

L−2 = αH2 + βḢ, (9)

where α and β are dimensionless parameters. Since the entropy already includes the quantum
gravitational corrections, it is not required to introduce high energy regime modifications to
the GO cut-off.

3 Inflation driven by Barrow Holographic dark energy

We have assumed that the inflationary era of the universe is driven by the BHDE with the IR
cut-off as GO cut-off given by (9). Ignoring the contribution of matter part, the Friedmann
equation for an expanding universe reads

H2 =
1

3M2
P

C(αH2 + βḢ)1−∆
2 , (10)

Exploiting equations (2) and (9) we get

Ḣ =
H2

β

[(
3M2

P

C

) 2
2−∆

(H2)
∆

2−∆ − α

]
. (11)

For change of variable we consider N = ln(a/ai), where ai is initial value of a. From this

variable change we have dN = Hdt and Ḣ = 1
2
dH2

dN . Integrating (11) we obtain Hubble
parameter in terms of number of e-folds as

ln

[
(H̃2)

∆
2−∆ −

(
3M2

P

C

) 2
2−∆ (

M2
P

) ∆
2−∆

1

α

]H̃e
H̃i

= lnC1 +
∆

2−∆
ln(M2

P )− 2α∆N

β(∆− 2)
, (12)



Inflation driven by Barrow holographic dark energy 5

where H̃ = H/MP is the dimensionless Hubble parameter. Exploiting equation (11) the
first slow-roll parameter is derived as

ε1 = − Ḣ

H2
= − 1

β

[(
3M2

P

C

) 2
2−∆ (

M2
P

) ∆
2−∆ (H̃2)

∆
2−∆ − α

]
, (13)

The other slow-roll parameters are defined as, [61, 62, 63, 64]

εn+1 =
d ln(εn)

dN
, (14)

Using the above iterative relation the second slow-roll parameter can be derived as

ε2 =
ε̇1
Hε1

=
2

β

(
3M2

P

C

) 2
2−∆

(
∆

2−∆

)(
M2
P

) ∆
2−∆ (H̃2)

∆
2−∆ , (15)

These slow-roll parameters are considered to be very small at the start of the inflationary
phase. At ε1 = 1 the inflationary phase ends. The Hubble parameter at this epoch takes
the form

H̃e

2
=

[
(α− β)

(
C

3M2
P

) 2
2−∆ (

M2
P

) ∆
∆−2

] 2−∆
∆

. (16)

Using equation (12) the Hubble parameter is derived at the earlier phase of inflation that
includes the horizon crossing time as

H̃i

2
=

1

M2
P

[
1

α− β

(
3M2

P

C

) 2
2−∆

− C1e
− 2α∆N
β(∆−2)

]∆−2
∆

. (17)

According to ref [63], the expressions of the inflationary observables, namely the scalar
spectral index of the curvature perturbations ns and the tensor-to-scalar ratio r are given
by

r = 16ε1 and ns = 1− 2ε1 − 2ε2. (18)

The above expressions of the observables are approximate values, since they have not been
obtained from a complete perturbation analysis of holographic dark energy. Hence it is
obvious that a full perturbation analysis is required to extract the exact expressions for
the inflationary observable. But here we have adopted a procedure that also provides good
approximation as long as H(t) is known. For this we have calculated these parameters at
the time of horizon crossing that result in

r |
H̃i

= −16

β

{ 1

α− β
− C1e

− 2α∆N
β(∆−2)

(
C

3M2
P

) 2
2−∆

}−1

− α

 , (19)

and

ns |H̃i= 1 +
2

β

{ 1

α− β
− C1e

− 2α∆N
β(∆−2)

(
C

3M2
P

) 2
2−∆

}−1

− α

+
4

β

(
3M2

P

C

) 2
2−∆

(
∆

2−∆

)
[

1

α− β

(
3M2

P

C

) 2
2−∆

− C1e
− 2α∆N
β(∆−2)

]−1

, (20)

These approximate expressions are quite efficient in describing the scenario and can be
consistently used with the observational data to constrain the parameter space of the model.
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4 Correspondence between BHDE and scalar field

This section is dedicated to investigate that if it is possible to describe the inflationary
paradigm by BHDE approach through the dynamics of a scalar field. Here we consider two
different models namely the Canonical scalar field and the Tachyonic field.

4.1 Canonical Scalar field

Firstly the correspondence between BHDE and canonical scalar field is considered. Accord-
ing to Ref. [65], the energy density and pressure of canonical scalar field read

ρφc =
1

2
φ̇c

2
+ V (φc), (21)

and

pφc =
1

2
φ̇c

2
− V (φc). (22)

where φc represents the canonical scalar field. Comparing the energy density and pressure
of BHDE and canonical scalar field we get

V (φc) = ρBHDE −
1

2
φ̇c

2
=

1

2
ρBHDE(1− ωBHDE), (23)

and

φ̇c
2

= ρBHDE + pBHDE = ρBHDE(1 + ωBHDE). (24)

Inserting (8) and (11) in (23) we have obtained the potential in terms of Hubble parameter
as

V (φc) = M4
P H̃

2

[
3 +

1

β

{(
3M2

P

C

) 2
2−∆ (

M2
P H̃

2
) ∆

2−∆ − α

}]
, (25)

The constructed potential function from the canonical scalar field is plotted in Fig. 1
against the Hubble parameter H. Different trajectories are generated for different values of
∆ to understand the dependence of the potential on the parameter. From the figure it is
evident that the potential grows with the Hubble function. This result is consistent with
the observations.

Now the expression of φ̇c
2

can be obtained from Friedmann equation as φ̇c
2

= −2M2
P Ḣ.

For a change of variable it can be rewritten as φ̇c = Hφ′c and

φ′2c = −2M2
P

Ḣ

H2
, (26)

where φ′c represents derivative of φc with respect to number of e-folds N , i.e. φ′c = dφc/dN .
Exploiting equation (13) and integrating (26) one arrives at the following expression

∆φcN =
√

2MP

∫ N

0

√√√√− 1

β

{(
3M2

P

C

) 2
2−∆ (

M2
P H̃

2
) ∆

∆−2 − α

}
dN, (27)

which can be solved numerically (since it is difficult to obtain an analytic solution with the
known mathematical rules) to obtain the evolution of the potential function with respect to
the field φc. Here N = 0 represents the horizon crossing of perturbation.
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Figure 1: The constructed potential V (φc) for BHDE from the canonical scalar field is
plotted against the Hubble parameter H. The constants are considered as Mp = 1, C = 3,
α = 0.1, β = 0.2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4.2 Tachyonic Field

This section aims to investigate the condition for which BHDE behaves like a Tachyonic
field. The energy density and pressure of the Tachyonic field [66] are as follows

ρφT =
V (φT )√
1− φ̇T

2
, (28)

and

pφT = −V (φT )

√
1− φ̇T

2
, (29)

where φT represents the tachyonic scalar field. To determine an appropriate potential for
tachyonic field for which it behaves like BHDE, we compare the energy densities and pressure
of these two dark energy models, which results in

φ̇T
2

= 1 + ωBHDE , (30)

and

V (φT ) = ρBHDE

√
1− φ̇T

2
. (31)

Using (8) and (13) we have

φ́T
2

=
2

3
ε1

(
M2
P H̃

2
)1−∆

2

. (32)

Integration of eqn. (32) results in

∆φTN =

√
2

3
(M2

P )
1−∆

2

∫ N

0

√√√√−H̃2

β

[(
3M2

P

C

) 2
2−∆

(M2
P )

∆
2−∆ (H̃2)

∆
2−∆ − α

]
dN. (33)
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The constructed potential function from the tachyonic scalar field is plotted in Fig. 2
against the Hubble parameter H. Here also different trajectories are generated for different
values of ∆ to understand the dependence of the potential on the parameter. From the figure
it is evident that the potential grows with the Hubble function. This result is consistent
with the observations.
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Figure 2: The constructed potential V (φT ) for BHDE from the Tachyonic scalar field is
plotted against the Hubble parameter H. The constants are considered as Mp = 1, C = 3,
α = 0.1, β = 0.2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

5 Discussion and Conclusion

The application of the holographic principle in late time acceleration is quite common in
literature. Motivated from this, here we have applied the principle in the early time infla-
tionary scenario. According to the principle, the energy density is proportional to the inverse
of length squared. Since the length scale is expected to be very small during inflation, the
energy density generated should be large enough to drive the inflation. It is known that
the holographic dark energy originates from entropy, the nature of the DE can be altered
by modifying the entropy law. Such modifications can be brought about by considering
quantum gravitational effects. Here we have considered one such modification by consid-
ering the entropy relation of Barrow, which was motivated by the shape of the COVID-19
virus. It was found that these quantum corrections induced complex fractal features in the
structure of a black hole. We have explored an inflationary scenario described by a universe
filled with Barrow holographic dark energy, using the Granda-Oliveros IR cut-off. Various
analytic solutions for the model were found out including the slow-roll parameters, scalar
spectral index and tensor-to-scalar ratio. Finally, a correspondence between the BHDE and
scalar fields is explored. Both canonical scalar field and Tachyonic field are used for this
purpose. The potential generated from the two different fields is plotted to get an idea of
its evolution. It is seen that the trend is consistent with the observational evidences. This
work shows that BHDE can be a perfect candidate to drive the early inflationary scenario
of the universe. This along with its success in explaining the late acceleration makes the
model a successful candidate of dark energy that can satisfactorily explain almost all the
major phases of the cosmological evolution of the universe.
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