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Abstract. In this article, we examine the effects of anisotropy on a model of canonical
warm inflation with the power-law potential. The results of this model are compared
to Planck satellite observational data. Using a conventional local scalar field in the
Bianchi type I metric, the slow-roll conditions and the suitable regions, where the free
parameters of the model show a good agreement with Planck results, are investigated
in detail. Following the usual calculations for warm inflationary approaches, the early
universe in two different dissipative regimes, namely the weak dissipative and the strong
dissipative ones, is investigated. In this regard, the slow-roll parameters and their
observational indices in both regimes are obtained and finally, it is shown that this
model is in good agreement with observations.
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1 Introduction

The cosmic inflationary scenario provides a desirable mechanism for describing the large-
scale structures of the Universe [1–7]. We have studied different models of inflation in
the sources [8,9]. And among all those models, we found that there is a general division
called cold inflation and warm inflation. More details are in [10–21]. The main condition
for generating warm inflation is that T > H), where T refers to the flow temperature
which indicates thermal fluctuations and H means the Hubble parameter which includes
quantum fluctuations [12–15,22–26]. We know that quantum and thermal fluctuations play
an important role in the formation of initial cosmic density fluctuations and large-scale
structures [13–18,27]. In 1983, the theory of chaotic inflation was introduced following
Linde’s studies in which the power-law potentials were introduced, and today we see that
the power-law potentials due to simplicity and compliance with observations and solve the
problem of graceful exit from the horizon are considered in new models [28]. Two structures
are commonly used in the calculation of slow-roll parameters in inflation models: One is the
structure in which the parameters are expressed in terms of the potential of the scalar field,
and this is the structure that we have discussed in this article and [29]. In the other structure,
parameters the structure in which the parameters are expressed in terms of the Hubble
parameter and is called the Hamilton Jacobi form. So far, many models in the framework
of gravity theories [30], and observational results related to CMB and the formation of
large-scale structures measured by advanced instruments have been able to provide us with
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useful information [18–31]. Among them is the existence of statistical anisotropy in the
CMB spectrum, which has raised doubts about the existence of anisotropies [50–53] in the
inflation period. What has been said so far is the theoretical and observational reasons for
the importance of addressing the issue of inflation, and especially the issue of anisotropy in a
period of evolution universe, but it is not yet clear what kind of gravity existed in the period
of inflation. Therefore, in this study, we decided to investigate the existence of anisotropy
in a model of cosmic warm inflation in the Bianchi type I framework.

It should be noted that the Bianchi model is an extension of the standard FLRW flat
model and is the simplest model in the world that depicts an anisotropic but homogeneous
flat space [39,40] (C:\ Users \ ali \ Downloads \ REF67) Compared to the world FLRW,
which has the same scale factor for its spatial directions. In the Bianchi world, the scale
factor can change in different independent directions. For the sake of the importance of
the subject and the fact that the study of anisotropic inflation world has better advantages
than the isotropic world, the present study has addressed this issue. Our motivation in
the investigation of this work by following our previous work is to know what power-law
potential is valid in the presence of an anisotropic metric to satisfy the inflation. Accordingly,
we compare our model calculations with the latest observational data from the observations
of the Wilkinson and Planck microwave anisotropy probe satellite, including the amplitude
of scalar spectrum perturbations and the scalar and tensor spectral indices. In the second
part of this article, we have stated the theoretical framework of anisotropic warm inflation.
In the third section, we examine the effects of anisotropy in the weak dissipative regime and
identify the best areas for the appropriate parameters. In the fourth section, we examine
the anisotropic effects on the strong dissipative regime, and similarly to the third section,
we obtain the areas where the parameters can best match with the observations. Finally, in
the fifth section, we have summarized the results of our final reviews and comments.

2 General Framework

The BI metric is expressed as follows [39]

ds2 = dt2 −A2 (t) dx2 −B2 (t) dy2 − C2 (t) dz2,

B (t) = C (t) ,

ds2 = dt2 −A2 (t) dx2 −B2 (t) (dy
2

+ dz2).

(1)

The coefficients A, B, and C are functions of t. A is the scale factor in the x-axis direction,
and B is scale factor in the y-axis and z-axis directions. For more information on the Bianchi
metric, see reference [39,40]. Planck’s data show CMB anisotropy, which is an extension of
the standard FLRW flat model, as it may be the reason why the world is not completely
isotropic, and is anisotropic but homogeneous. A world that represents a flat space.
Below are some field equations related to BI metrices [41,42]

Htot =
1

3
(H1 + 2H2) , (2)

H1 =
Ȧ (t)

A (t)
, H2 = H3 =

Ḃ(t)

B(t)
, A = Bλ, H1 = λH2, (3)

3Htot
2 − σ2 =

1

M2
P

(ρΦ + ρr), (4)

3Htot
2+2Ḣtot+σ

2= − 1

M2
P

P (φ). (5)
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The Hubble and shear parameter equations are expressed as follows [39,40]

Htot=
1

3
(λ+2)H2, (6)

σ2=
(λ−1)

2
H2

2

3
. (7)

It should be noted that in the equations given above, λ is a constant value and indicates the
degree of deviation from isotropy along the x-axis. If the value of λ = 1, we get the same
flat FLRW spacetime with signature 2.
As we know, the energy density and pressure of the scalar field and the density of the
radiation field are defined as follows [29]

ρφ=
1

2
φ̇2+V (φ) , (8)

Pφ=
1

2
φ̇2−V (φ) , (9)

ρr=
π2

30
g∗T

4= c T 4. (10)

Here, T is fluid temperature, c is the Stefan Boltzmann constant, and the value of c =
70. Meanwhile, the equation of the anisotropic warm inflation field is expressed as follows
[12–15,29]

φ̈+H2 (λ+2) (1+R) φ̇+V,φ= 0, (11)

where R≡ Γ
(λ+2)H2

is dissipation function and Γ(T, φ)=aTnφ1−n is called the dissipation

coefficient. The dissipative coefficient can be a function of time, a function of the scalar
field, or a function of both [27,28].
In this case, the conservation equations of ρφ and Pφ are described by the following equations

ρ̇φ+ (λ+2)H2 (ρφ+ Pφ) = −Γφ̇2, (12)

ρ̇r+
4

3
(λ+2)H2ρr=Γφ̇2. (13)

Applying the slow-Roll conditions, equations (11) and (13) are approximated as

ρr=α T
4' 3Γφ̇2

4 (λ+2)H2
, (14)

H2 (λ+2) (1+R) φ̇+V,φ= 0. (15)

The necessary condition for warm inflation to occur is that, its slow-roll parameters are
defined as follows

ε=
M2
P

2

(
V,φ
V

)2

, η= M2
P

(
V,φφ
V

)
, (16)

ε� 1 +R, η � 1 +R. (17)

Another important parameter that needs to be accounted in warm inflation is the number
of e-folds that play an effective role in solving the horizon problem and is expressed by

N= −
∫ Φ

Φend

1
3 (λ+2)H2

Φ̇
dΦ. (18)
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To estimate the best free parameters in any inflation model, it’s required to get the amplitude
of scalar and tensor perturbations, tensor-to-scalar spectrum ratio, the scalar spectral index
and running parameter, supported the definition of anisotropic warm inflation, hence, its
equations are defined as follows

Ps =
25 Htot

4Φ̇2
δΦ2 =

25 (λ+ 2)
2
H2

2

36Φ̇2
δΦ2, (19)

Pt =
2 (λ+ 2)

2
H2

2

9 π2M2
P

, (20)

r ≡ Pt
Ps
, (21)

ns − 1 ≡ d lnPs
d ln k

, (22)

αs=
dns
d ln k

. (23)

From [43] we obtained

a
(λ+2)

3
H2=csk,

d

d ln k
' − d

dN
. (24)

In the following, we will inspect the effects of anisotropy during a model of warm inflation
with the power-law potential in two strong and weak dissipative regimes, and observe within
the weak dissipation regime the dominant parameter is that the Hubble parameter, while
within the strong dissipation regime the dissipation coefficient is that the dominant param-
eter. We have an interest to find out the best fit for the free parameters in our proposed
model.

3 Investigation of Effects Anisotropy in Weak Dissipa-
tive Regime

In this case, we try to test our model on a weak dissipative regime for R < 1 and potential
V (Φ) =V0Φk. In slow-roll approximation, the Friedman equations and the temperature
equation will be as follows

H2
2=

1

(2λ+1)M2
P

V (Φ) , (25)

H2 (λ+2) φ̇+V,φ= 0, (26)

T=γφ
−1+ k

2
−n

4−n , γ=

(
3

4

) 1
4−n
(
a M2

P k
2 (1+2λ)

3
2 V0

1
2

α (2+λ)
3

) 1
4−n

. (27)

The first parameter of the slow-roll is acquired as

ε=
k2M2

p

2φ2
. (28)

As we know, inflation ends when, ε = 1 and from that, the measured field is at the end of
inflation as follows

φend=
kMp√

2
. (29)



Constraints of Anisotropy on Warm Power-Law Inflation · · · 19

The field function at the moment of crossing the horizon is also obtained by using [18] as
follows

φ=

√
(−2k M4

p N)( 1+2 λ)+(2+λ) φend
2√

2k+5k λ+2k λ2

k(1+2λ)

. (30)

In the following, we obtain the perturbation parameters and compare them with the values
obtained from the observations. The amplitude of the scalar spectrum perturbations and
the scalar and tensor spectral, tensor to scalar ratio, and running, are equations that are
defined as [22,29].

From (19), In weak dissipative regime with σφ2∼= 1
3 (λ+2)H2T , we have

Ps =

25 × 2

46+k−14n
4(−4+n) γ(2 + λ)2M

14+k−6n
8−2n

+ k
2
−5

p

 k
(
k(2+λ)−4M2

p N(1+2λ)
)

2+λ


14+k−6n
2(8−2n)

√√√√√√√√ 2
(−k

2

)
V0

 k
(
k(2+λ)−4M2

p N(1+2λ)
)

2+λ

 k
2

(k(1+2λ))2

(k(1 + 2λ))2
,

(31)

a(n, k,N) =
α(λ+ 2)3

M2
pk

2(1 + 2λ)
3
2
√
v0

×

(
PsM

4+ 14+k−6n
8−2n + k−2

2
p (k+2kλ)

2

25( 3
4 )

1
4−n 2

46+k−14n
4(−4+n) (2+λ)

2
(

√
k(k(2+λ)−4M2

pN(1+2λ))
√

2+λ
)

14+k−6n
8−2n

√
2
−k
2 V0(

√
k(k(2+λ)−4M2

pN(1+2λ)
√

2+λ
)

K

(1+2λ)

)4−n

,

(32)

ns(n, k,N) = 1+
M2
p (−14+k (−5+n) +6n) (1 + 2λ)

(−4+n)B(k (λ+2)−4 M2
pN (1 + 2λ) )

, (33)

αs (n, k,N) = −
4 M4

p (−14+k (−5+n) +6n) (1 + 2λ)
2

(−4+n)
(
k (2+λ)−4 M2

pN (1 + 2λ)
)2 , (34)

Pt=
2 V0 (2+λ)

2
(
k2 M2

p

2 +
6 k M2

p N(1+2λ)

(2+λ)2
)

k
2

9 M4
p π

2(1 + 2λ)
, (35)

r(n, k,N) =

2

62−7k−18n+2kn
16−4n k2V0 (1 + 2λ) M

14+k−6n
2(n−4)

− k−2
2

+k

p


√
k
(
k(2+λ)−4 M2

pN(1+2λ)
)

√
2+λ


14+k−6n
2(n−4) (

k

(
k+

12(N+2Nλ)

(2+λ)2

)) k
2

225 π2γ

√√√√√√√ 2
−k
2 V0


√
k(k(2+λ)−4 M2

p N (1+2λ)
√

2+λ

k
(1+2λ)

.

(36)

Now, we specify the constraints on the parameters using the values obtained from the
observations. Using of the allowed values that achieved for the pair of parameters (n, k), at
our previous work, [29], we can plot the r − ns diagram as follows.
The best value for the parameters are acquired while the maximum fit is obtained on the
observation diagram.

Here, in Figure 1, two diagrams above show a good match between Planck 2013 observa-
tions for free parameters guesstimated and The chart below shows the compliance of Planck
2018 observational data.
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Figure 1: (Color online) The r − ns diagram shows prediction of the model in the weak
regime for free parametes. In the left panel α = 70, n = 3, k = 4, V0 = 2.7×10−12, a = 107,
λ = 1, Mp = 1, and Ne = 65. In the right panel α = 70, n = 3, k = 4, V0 = 2.7 × 10−13,
a = 107, λ = 5, Mp = 1, and Ne = 65 in comparison to the observational data by Planck
2013, 2015. The likelihood of Planck 2013 is indicated with gray contours, Planck 2015
TT+lowP with red contours and Planck 2015 TT, TE, EE+ lowP with blue contours. in
both figures, the thick black lines refer to the predictions of theatrical results in which small
and large circles are the values of ns at the numbers of e-folds N = 55, N = 65, respectively.
In the below panel α = 70, k = 4, n = 3, V0 = 2.7 × 10−12, Mp = 1, a = 107, λ = 1, and
Ne = 65. The results of Planck 2018 are indicated by dark and light blue colors referring to
68% and 95% confidence levels, respectively. In both figures, the thick black lines refer to
the predictions of theoretical results in which small and large circles are the values of ns at
the numbers of e-folds N = 55 and N = 65, respectively.

In recent observational data, the amplitude of scalar perturbations across the horizon is
as Ps = 2.17± 0.1× 10−9, and the tensor to scalar ratios r < 0.11 at 68% [43–47] has been
shown. Using the equations (33) and (34), we plot the diagram of the running parameter
dns
dN −ns and compare it with observations. Figure 2, the plot indicates the prediction of this
model, it is clear that lie inside the joint 68% Cl region of Planck 2015 TT, TE, EE+lowP
data, ([47,48]), and so could satisfy the compatibility with observations.
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Figure 2: (Color online) In this figure, the thick black line depicts the predictions of our
model in which small and large circles are the values of ns at the numbers of e-folds N = 55
and N = 65, respectively. To plot this shape we use the free parameters n = 3, k = 4,
V0 = 2.7 × 10−13, λ = 5, Mp = 1, Ne= 65, and α = 70. In this figure the gray contours
indicates the likelihood of Planck 2013, Planck 2015 TT+lowP showed with red contours
and the blue contours considered for Planck 2015 TT, TE, EE +lowP.

We know in warm inflation model, the thermal fluctuations overcome the quantum fluc-
tuations. this is an important feature of the warm inflationary model since the fluid temper-
ature is bigger than the Hubble parameter, i.e. T > H. To receive a healthy warm inflation,
this condition should be justified during the cosmological evolution. Figure 3 expresses the
behavior of the ratio of the temperature to the Hubble parameter during such era.

Figure 3: (Color online) the plot shows the ratio of the temperature to the Hubble parameter
during the inflationary period of the model in the weak dissipative regime. The inflation
scalar field, φ for different values of (n, k) and the parameter a. As one can see from the plots
during inflation, the temperature is larger than the Hubble parameter, and the condition
T > H is satisfied properly. To draw these figures, we fixed the value of V0 = 2.7 × 10−13

(blue line: n = 3, k = 4, a = 107, λ = 1, and red dashed lines: n = 3, k = 4, a = 107, and
λ = 5.)
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In the following, we examine our model in a strong dissipative regime with the same
amount of potential.

4 Investigation of Effects Anisotropy in strong Dissipa-
tive Regime

Considering V (Φ) = V0Φ
k the same as the previous section, we extend our calculations for

strong dissipation regimes, for R� 1.
Using H2 = 1

(2λ+1)M2
P
V (Φ), H2 (λ+ 2)R φ̇ + V,φ = 0, and R ≡ Γ

(λ+2)H2
the temperature

of the radiation is gained as

T=γ φ
−3− 3k

2
+n

4+n , γ=

(
3

4

) 1
4+n

M
1

4+n

P

(√
(2λ+1)k

2
V0

3
2

a α (λ+2)

) 1
4+n

. (37)

The slow-roll parameter is ε =
k2M2

p

2φ2 . Hence,

R =

aMPφ
1−n
(
γ φ

−3− 3k
2

+n

4+n

)n
(λ+ 2)

√
V0φk

(2λ+1)

. (38)

At the end of inflation, we know in the strong regime, ε ' R. In this case, the scalar field is

φend=

 (λ+2)
√

V0

(2λ+1) k
2MP

2γn a

−
((

n(−3− 3k
2

+n)

4+n +(1−n− k2 )

)
+2

)
. (39)

And also the field based on the number of e-fold we get

φ =

√√√√√√2kM2
P N + 26−k−2n+

2n (−3− 3k
2

+n)

4+n

k2MP γ −n (2 + λ)
√

V0

(1+2λ)

a

−6+k+2n−
2n(−3− 3k

2
+n)

4+n

.

(40)

From Ps = 25H2

4Φ̇2
δΦ2 in [49], we know from (40) and δΦ2 ' KFT

2π2 , KF =
√

Γ(λ+2
3 H), the

scalar power spectrum is obtained as

Ps={
25 a2 γ (2+λ)2

72
√

3 k2M2
P
π2 (V0+2V0λ)

2kM
2
P N+2

−y
 j γ−n

a

−y
1
2

4−k−2n+
−3− 3k

2
+n

4+n

γ
2k M

2
P N+2

−y
 γ−nj

a

yf


2n

×

√√√√√√√√(a(2 + λ)

2kM2
P
N + 2−y

( γ−nj
a

)−y 1−n
2
×

1

MP

√√√√√√√V0

(
2kM2

P
N + 2−y

(
γ−n j
a

)y) k
2

(1 + 2λ)
×

γ (2kM2
P
N + 2−y

(
γ−nj

a

)y
)

f
n ,

(41)

where y = 4(−6+k+2n+kn)
4+n , j = k2MP (2 + λ)

√
V0

(1+2λ) , and f = −6−3k+2n
4(4+n)

β=

(
3

4

) 1
4+n

 MP k
2V0

3
2

α (λ+ 2)
√

1
(2λ+1)

 1
4+n

, x =

(
4− k − 2n+

−3− 3k
2 + n

4 + n

)
.
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The scalar spectral index get

ns(n, k,N) = 1+

3 ×2

−8+7n+4k(1+n)
4+n k M2

P (−10 + 8n+3k(1+n))

 k
2MP γ −n (2+λ)

√
V0

(1+2λ)
a


24

4+n

(4+n)

2

9n+4k(1+n)
4+n k M2

P
N

 k
2MP γ −n (2+λ)

√
V0

(1+2λ)
a


24

4+n

+2
20

4+n

 k
2MP γ −n (2+λ)

√
V0

(1+2λ)
a


4(k+2n+kn)

4+n



,

(42)

and running get

α(n, k,N) =

3 × 2

−8(−1+k+2n+kn)
4+n k2 M2

P (−10 + 8n + 3k(1 + n))

 k
2MP γ −n (2+λ)

√
V0

(1+2λ)
a


48

4+n

(4 + n)

2

9n+4k(1+n)
4+n k M2

P
N

 k
2MP γ −n (2+λ)

√
V0

(1+2λ)
a


24

4+n

+ 2
20

4+n

 k
2MP γ −n (2+λ)

√
V0

(1+2λ)
a


4(k+2n+kn)

4+n


2
.

(43)

The tensor power spectrum is

Pt (n, k,N) =
2 V0(2+λ)2(2 k M2

P N + 2

−4(−6+k+2n+kn)
4+n (

k2MP (2+λ) γ −n
√

V0
(1+2λ)

a
)

−4(−6+k+2n+kn)
4+n

)

k
2

27 M4
P
π2

. (44)

The tensor to scalar ratio is acquired as

r (n, k,N) =
(16 k2V0 (V0+2V0λ) dG

(
γ (d)

h
)−2n

)25
√

3 a2M
3
2

P γ

√
(a (2+λ) (γdh)

n
d

1−n
2

√
V0 d

k
2

(1+2λ)

 , (45)

where

w=
4 (−6+k+2n+kn)

4+n
,

i=
k2 (2+λ)MP γ −−n

√
V0

(1+2λ)

a
,

d=
(
2 k M2

P N+2−wiw
)
,

G=
−26 + 6n+4n2+k(19 + 4n)

4(4+n)
,

h=
−6− 3k+2n

4(4+n)
.
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Figure 4: (Color online) this is r − ns diagram above shows prediction of our theorical
results in the left panel, in strong regime for free parameters α = 70, k = 1

7 , n = 1
9 ,

V0 = 2.98× 10−13, Mp = 1, a = 5× 10−8, λ = 4× 10−6, and Ne = 65 in comparison to the
observational data risen by Planck 2013, 2015. The likelihood of Planck 2013 is indicated
with gray contours, Planck TT+lawP with red contours, and Planck TT, TE, EE+lawP
with blue contours. In the right panel, in strong regime for free parameters α = 70, k = 1

6 ,
n = 1

9 , V0 = 2.98 × 10−13, Mp = 1, a = 5 × 10−8, λ = 4 × 10−5, and Ne = 65 in coparison
to the observational data risen by Planck 2013, 2015. In both figures, the thick black lines
refer to the predictions of theorical results in which small and large cricles are the value
on ns at the numbers of e−foldes N = 55 and N = 65 respectively. In the below panel
α = 70, k = 4, n = 3, V0 = 2.7 × 10−12, Mp = 1, a = 107, λ = 1, and Ne = 65. The
results of Planck 2018 are indicated by dark and light blue colors referring to 68% and 95%
confidence levels, respectively. In both figures, the thick black lines refer to the predictions
of theoretical results in which small and large circles are the values of ns at the numbers of
e−foldes N = 55 and N = 65, respectively.

Now, we evaluate our model based on the results of the observations and apply some
constraint to gain the parameters that create the best fit.
Using of the allowed values that achieved for the pair of parameters (n, k), at our previous
work [29], we can re-plot the r − ns diagram as follows.

The best parameters for this diagram are those create the desired match. In Figure
5, we guesstimated some constraint over the parameters of our model compared to the
observations. Therefore, in both regimes, for the potentials of the power-law in the context
of anisotropic warm inflation, the suitable agreement with the observations is sighted.
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Figure 5: (Color online) this is dns
dN −ns diagram which explains the running of the parameter

ns. In this figure, the thick black line despicts the predictions of our model in which small
and large circles are the values of ns at the numbers of e-folds N = 55 and N = 65,
respectively. To plot this shape we use the free parameters n = 1

9 , k = 1
7 , V0 = 2.98×10−13,

λ = 4× 10−6, Mp = 1, Ne = 65, and α = 70. In this figure the gray contours indicates the
likelihood of Planck 2013, Planck 2015 TT+lowP showed with red contours and the blue
conturs considered for Planck 2015 TT, TE, EE +lowP.

The same as the previous section, the diagram T/H versus is plotted, i.e. T > H.

Figure 6: (Color online) the plot shows the ratio of the temperature to the Hubble parameter
during the inflationary period of the model in the strong dissipative regime. The inflation
scalar field, φ for different values of (n, k) and the parameter a. As one can see from the plots
during inflation, the temperature is larger than the Hubble parameter, and the condition
T > H is satisfied properly. To draw these figures, we fixed the value of V0 = 2.98× 10−13

(blue line: n = 1.9, k = 1.7, a = 10−8, λ=4×10−6, and red dashed lines: n = 1.9, k = 1.7,
a = 10−8, λ=4×10−5).

5 Conclusions

Following the research on our article entitled ”Constraints on warm power-law inflation in
light of Planck results” [29], we saw that for (n = 2, k = 6) with V 0 = 2.7×10−25 in the weak
dissipation regime, we have the most agreement with Planck’s observational data in 2013
and 2015. In the strong dissipation regime in the isotropic warm inflation model for (n = 1,
k = 4) with V 0 = 5× 10−20. We obtained the most agreement with Planck’s observations.
In this work, we have studied the effects of anisotropy [51–53] on warm inflation in the
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framework of the Bianchi type I metric and examine the model for the power-law potential
in two models of the weak and strong dissipative regime, and the different parameters of
slow-roll and power spectrum of scalar and tensor perturbations, scalar and tensor spectral
indices, their running and tensor-to-scalar ratio were been gained. Using of the allowed
values of the pair (n, k) in the reference [29] and plotting the r−ns diagram and its running, it
has been estimated the best regions compatible with the observations for the free parameters.

In the weak dissipation regime the pair (n = 3, k = 4) for r − ns diagram with λ = 1, 5,
it has been seen the best fit with the observations that shown it in Figures 1 and 2. These
figures have illustrated that our results are consistent with Planck’s observations. The same
argumentation is true for the strong dissipative regime in the presence of the parameters
(n = 1

9 , k = 1
7 ) with, V0 = 2.98× 10−13 and λ = 4× 10−6. For this regime, due to presence

of the parameter, the chance in the selection of free parameters (n, k) is less than the weak
case. We will continue this study in the future by examining viscosity.

The new consequences of the anisotropic scenario against the isotropic setup is shown
in Figure 1, that is left panel related to λ = 1, to be the isotropic and right panel λ = 5
is anisotropic setup. We also compared the results obtained from the calculations with the
license plate data in 2018 and by plotting the r − ns diagram, we examined the degree
of agreement with the observational data in both weak and strong regimes, and of course
showed that these results are similar to the calculation sample for the strong dissipation
regime. It does not have Planck for 2013 and 2015 data.

In the weak dissipation regime the pair(n = 3, k = 4) for r−ns diagram with λ = 1, has
been seen the best fit with the observations that shown it in Figure 1. But for the strong
dissipative regime we did not see a good match, which we showed in the below Figure 4.

References

[1] Starobinsky, A. A. 1980, Phys. Lett. B, 91, 99.

[2] Guth, A. H. 1981, Phys. Rev. D, 23, 347.

[3] Linde, A. D. 1982, Phys. Lett. B, 108, 389.

[4] Linde, A. D. 1983, Phys. Lett. B, 129, 177.

[5] Linde, A. D. 1986, Phys. Lett. B, 175, 395.

[6] Linde, A. D. 1986, Mod. Phys. Lett. A, 1, 81.

[7] Albrecht, A., & Steinhardt, P. J. 1982, Phys. Rev. Lett., 48, 1220.

[8] Liddle, A. R. & lyth, D. H. 2000, Cosmological Inflation and Large-Scale Structure,
Cambridge university press.

[9] Brandenberger, A. H. arXive: hep-ph/9910410.

[10] De Oliveira, H. P. 2002, Phys. Lett. B, 526, 1.

[11] Cid, A. M., del Campo, S., & Herrera, R. 2007, J. Cosmol. Astropart. Phys., 2007, 005.

[12] Berera, A. 1995, Phy. Rev. Lett., 75, 3218.

[13] Berera, A. 1996, Phy. Rev. D, 54, 2519.

[14] Berera, A. 1997, Phy. Rev. D, 55, 3346.



Constraints of Anisotropy on Warm Power-Law Inflation · · · 27

[15] Berera, A. 2000, Nucl. Phys., 585, 666.

[16] Berera, A., Gleiser, M., & Ramos, R. O. 1998, Phys. Rev. D, 58, 123508.

[17] Rasouli, S., Rezazadeh, K., Abdolmaleki, A., & Karami, K. 2019, Eur. Phys. J. C, 79,
79.

[18] Akhtari, L., Mohammadi, A., Sayar, K., & Saaidi, Kh. 2017, Astropart. Phys., 90, 28.

[19] Guth, A. H.2000, Phys. Rep., 333, 555.

[20] Bhattacharya, K., Mohanty, S., & Nautiyal, A. 2006. Phys. Lett., 97, 251301.

[21] Mohanty, S., & Nautiyal, A. 2008, Phys. Rev. D, 78, 123515.

[22] Herrera, R., Videla, N., & Olivares, M. 2015, Eur. Phys. J. C, 75, 205.

[23] Herrera, R., Olivares, M., & Videla, N. 2014, Phys. Rev. D, 90, 1033502.

[24] Herrera, R., Olivares, M., & Videla, N. 2014, Int. J. Mod. Phys. D, 23, 1450080.

[25] Cid, M. A., Campo, S., & Herrera, R. 2007, JCTA, 10, 005.

[26] Bastero-Gil, M., Berera, A., Romos, RO., & Rosa, JG. 2012, Phys. Lett. B, 712, 425.

[27] Berera, A., Mossm, I. G., & Ramos, R. O. 2009, Rep. Prog. Phys., 72, 026901.

[28] Lyth, D. H. 1997, Phys. Rev. Lett., 78, 1861.

[29] Ghadiri, Z., Aghamohammadi, A., & et al. 2020, Mod. Phys. Lett. A, 35, 11.

[30] Kumar, K. S., & et al. 2016, J. Cosmol. Astropart. Phys. 02, 063.

[31] Bartolo, N., & et al. 2004, Phys. Rep., 402, 103.

[32] Gangui, A. 1994, Phys. Rev. D, 50, 3684.

[33] de Oliveria-Costa, A., Tegmark, M., Zaldarriaga, M., & Hamilton, A. 2004, phys. Rev.
D, 69, 0635016.

[34] Copi, C., Huterer, D., Schwars, D., & Starkman, G. 2007, Phys. Rev., 75, 023507.

[35] Land, K., & Magueijo, J. 2005, Phys. Rev. Lett., 95, 071301

[36] Jaffe, T. R., Banday, A. J., Eriksen, H. K., Gorski, K. M., & Hansen, F. K. 2005,
Astrophys. J., 629, L1.

[37] Groeneboom, N. E., & Ericsen, H. K. 2009, Astrophys. J., 690, 1807.

[38] Hanson, D., Lewis, A., & Challinor, A. 2010, Phys. Rev. D, 81, 103003.

[39] Jain, R. K., & Sloth, M. S. 2014, JCAP, 1404, 027.

[40] Naderi, M., Aghamohammadi A., Refaei, A., & Sheikhahmadi, H. 2019, Mod. Phys.
Lett. A.

[41] Tirandari, M., & Saaidi, Kh. 2017, Nuclear Physics B, 925, 403.

[42] Fayaz, V., Hossienkhani, H., Amirabadi, M., & Azimi, N. 2014, Astrophys. Space Sci.,
353, 301.



28 Zahra Ghadiri et al.

[43] Hossienkhani, H., & Pasqua, A. 2014, Ap&SS, 349, 39.

[44] Unnikrishnan, S., & Sshni, V. 2013, J. Cosmol. Astropart. Phys., 2013, 063.

[45] Planck Collab, (P. A. R. Ade et al.), 2014, A&A, 571, A1.

[46] Planck Collab, (P. A. R. Ade et al.), 2014, A&A, 571, A22.

[47] Planck Collab, (P. A. R. Ade et al.), 2014, A&A, 571, A24.

[48] Planck Collab, (P. A. R. Ade et al.), 2016, A&A, 594, A20.

[49] Planck Collab, (Y. Akrami et al.), arXive:1807.06211 [astro-ph.CO].

[50] Gong, J.-O., Noumi, T., Shiu, G., Soda, J., Takahashi K., & Yamaguchi, M. 2020,
arxiv.org/abs/1910.11533.

[51] Talebian, A., Nassiri-Rad A., & Firouzjahi, H. 2019, arxiv.org/abs/1909.12773.

[52] Tirandari M., & Saaidi, Kh. 2017, arxiv.org/abs/1701.06890.

[53] Naderi, M., Aghamohammadi, A., Refaei, A., & Sheikhahmadi, H. 2019,
https://arxiv.org/abs/1809.02348.


