Towards quantum gravity | ||
Journal of Holography Applications in Physics | ||
دوره 3، شماره 2، شهریور 2023، صفحه 53-58 اصل مقاله (241.95 K) | ||
نوع مقاله: Review article | ||
شناسه دیجیتال (DOI): 10.22128/jhap.2023.687.1053 | ||
نویسنده | ||
Sergey I. Kruglov* | ||
Department of Physics, University of Toronto, 60 St. Georges St., Toronto, ON M5S 1A7, Canada. Canadian Quantum Research Center, 204-3002 32 Ave Vernon, BC V1T 2L7, Canada | ||
چکیده | ||
We analyze different approaches to quantum gravity. It is stressed that nonperturbative methods to quantise gravity and the usage of diffeomorphism-invariant variables are very important. We pay attention on the Wheeler--DeWitt equation in the framework of canonical quantum gravity. The Wheeler--DeWitt equation is presented in the first order formalism with the hope that this form can solve some problems such as singularities and the ordering. Also, there is a problem of defining the time. | ||
کلیدواژهها | ||
quantum gravity؛ nonperturbative methods؛ diffeomorphism-invariant variables؛ Wheeler--DeWitt equation؛ first-order formalism | ||
اصل مقاله | ||
Article PDF | ||
مراجع | ||
[1] S. Garlip, Spacetime foam: a review, arXiv:2209.14282. [2] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity: An Einstein centenary survey, eds. S.W. Hawking and W. Israel, Cambridge University Press (1979) 790-831. [3] A. Ashtekar, New variables for classical and quantum gravity, Phys. Rev. Lett. 57 (1986) 2244-2247. [4] C. Rovelli and L. Smolin, Loop space representation of quantum general relativity, Nucl. Phys. B 331 (1990) 80-152. [5] T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558-571. [6] T. Thiemann, Modern canonical quantum general relativity, Cambridge University Press (2007). [7] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W.H. Freeman, San Francisco (1973). [8] F. David, Simplicial quantum gravity and random lattices, in Gravitation and quantizations (Les Houches Summer School, Session LVII, 1992), eds. J. Zinn-Justin and B. Julia, Elsevier, Amsterdam (1995) 679-750 [arXiv:hep-th/9303127]. [9] J. Ambjorn and R. Loll, Nonperturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys. B 536 (1998) 407-434 [arXiv:hep-th/9805108]. [10] S. Surya, The causal set approach to quantum gravity, Living Rev. Rel. 22 (2019), 5 [arXiv:1903.11544]. [11] L. Smolin, Quantum gravity on a lattice, Nucl. Phys. B 148 (1979) 333-372. [12] P. Menotti and A. Pelissetto, Reflection positivity and graviton doubling in Euclidean lattice gravity, Ann. Phys. 170 (1986) 287-309, [13] I. Montvay and G. Mnster, Quantum fields on a lattice, Cambridge University Press (1994). [14] J. Smit, Introduction to quantum fields on a lattice, Cambridge University Press (2002). [15] D. Diakonov, Towards lattice-regularized quantum gravity, arXiv:1109.0091. [16] M. Reuter and F. Saueressig, Quantum gravity and the functional renormalization group, Cambridge University Press (2019). [17] M. Niedermaier and M. Reuter, The asymptotic safety scenario in quantum gravity, Living Rev. Rel. 9 (2006) 5-173. [18] R. Percacci, An introduction to covariant quantum gravity and asymptotic safety, World Sci- entific, Singapore (2017). [19] C. Kiefer, Quantum gravity, 3rd edition, Oxford University Press (2012). [20] R. Loll, G. Fabiano and F. Wagner, Quantum Gravity in 30 Questions, arXiv:2206.06762. [21] C. J. Isham, Canonical quantum gravity and the problem of time, in Integrable systems, quantum groups and quantum field theories, eds. L. A. Ibort and M. A. Rodriguez, NATO Sci. [22] S. Carlip, Quantum gravity: A progress report, Rept. Prog. Phys. 64 (2001) 885 [arXiv:gr-qc/0108040]. [23] B. S. DeWitt, Quantum theory of gravity. I. The canonical theory, Phys. Rev. 162 (1967) 1113-1148. [24] B. S. DeWitt, Quantum theory of gravity. II. The manifestly covariant theory, Phys. Rev. 162 (1967) 1195-1239. [25] B. S. DeWitt, The Quantum and gravity: The Wheeler-DeWitt equation, in The eighth Marcel Grossmann meeting, Proceedings, eds. T. Piran and R. Ruffini, World Scientific, Singapore (1999) 6-25. [26] K. V. Kucha˘r, Canonical quantum gravity, arXiv:gr-qc/9304012. [27] N. C. Tsamis and R. P. Woodard, The factor ordering problem must be regulated, Phys. Rev. D 36 (1987) 3641-3650. [28] J. L. Friedman and I. Jack, Formal commutators of the gravitational constraints are not well defined: A translation of Ashtekars ordering to the Schrdinger representation, Phys. Rev. D 37 (1988) 3495-3504. [29] Sergey I. Kruglov and Mir Faizal, Wave Function of the Universe from a Matrix Valued First-Order Formalism, Int. J. Geom. Meth. Mod. Phys. 12 (2015), 1550050 [arXiv:1408.3794]. | ||
آمار تعداد مشاهده مقاله: 316 تعداد دریافت فایل اصل مقاله: 514 |